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Polydispersity in liquid crystal systems 

by T. J. SLUCKIN 
Institut Laue-Langevin 38042 Grenoble Cedex, France, 

and Department of Mathematics, University of Southampton, 
Southampton SO9 5NH, England? 

(Received 2 February 1989; accepted 5 March 1989) 

Here we discuss the statistical mechanics of polydisperse liquid crystal systems. 
Three different kinds of liquid crystal systems are treated: nematic order in 
thermotropic Maier-Saupe-like systems and in lyotropic Onsager-like rod 
systems, and smectic order in a perfectly aligned hard rod fluid. In the first two 
cases we calculate the broadening of the isotropic-nematic transition. In the last 
case the suppression of smectic order is dealt with. We discuss the relationship 
between real systems and the models discussed in the paper. 

1. Introduction 
In this article we consider some aspects of the physics of multi-component liquid 

crystal systems. Binary mixtures of liquid crystals have been considered by a number 
of authors [l-31 but clearly the statistical mechanics of a liquid mixture becomes 
increasingly complicated as the number of components increases. In this situation a 
more attractive model system is the polydisperse limit-the limit of an infinite number 
of components. This approach has been used fruitfully by a number of authors to 
discuss phase equilibria in fluids [4, 51. We shall consider liquid crystal systems with 
many components each of which is distinguished by an index x which indicates some 
physical property. Examples of x might be the length of a rod-like molecule, or the 
molecular weight of a polymer molecule. In each of the examples we use we shall spell 
out the precise meaning of the index x .  Clearly in nature examples of such systems 
abound. While almost always x is a discrete variable, in practice it is often more 
convenient to suppose x to be a continuous variable; associated with x is a probability 
distribution function, p ( x ) .  In the limit of a very highly peaked distribution function 
(at x,,, say) the system becomes effectively a one component (or monodisperse) system. 
We shall find it useful to use the variance (r2 of the distribution function, p(x ) ,  as a 
perturbation parameter. 

The classic works in the theory of nematic liquid crystals are the Maier-Saupe [6] 
theory of thermotropic liquid crystals and the Onsager [7] theory of lyotropic liquid 
crystal order. More recently [8] it has been realised that hard rod systems can also 
form a smectic phase. In $2, 3 and 4 we discuss in turn these three systems and their 
generalization to polydisperse situations. We concentrate on some specific features, 
namely, the nature of the order, its relation to the polydispersity in the ordered phase, 
and the effect of the polydispersity on the phase transition marking the onset of the 
liquid-crystalline order. Finally, in $5, we make some concluding remarks. 

t Present address. 
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112 T. J. Sluckin 

2. Maier-Saupe theory 
Let us consider a polydisperse system of molecules with an index x which marks 

the different species of molecule. We shall suppose, in this example, that the orien- 
tational degrees of freedom are not affected by the index x. Consequently the 
orientational entropy S(x) is given by 

S(x) = - f(x, Q) In 4nf(x, Q) dQ, (2.1) I 
wheref(x, Q) is the orientational distribution function for the species x. This is clearly 
a simple generalization of the usual Maier-Saupe formula [6]. Thus the total entropy 
per particle is 

S = ~S(X)P(X)  dx, (2.2) 

where p(x) is the probability distribution function governing the frequency of x, and 

p(x) dx = 1. J 
On the other hand we suppose that the effective interaction is dependent on the 

index x. Thus 

(2.4) 

so that the index x is defined by the interaction u(x, x’) = u(x’, x), and pz(x) is the 
orientational order parameter appropriate to molecules of index x 

P~(x )  = P2 (COS O)f(x, Q)dQ, s (2.5) 

where P2(cosO) is the second Legendre polynomial, as is usual in the liquid crystal 
literature. The total Helmholtz free energy (per particle) is now 

A = u - TS = kT p(x)lnp(x)dx + kT p(x)f(x, Q)ln4nf(x, Q)dxdQ 

(2.6) 

s I 
- 3 s u(x, x’)132(x)P2(x’)p(x)p(x’)dxdx’, 

where the first term comes from the entropy of mixing of the polydisperse fluid. 
In our work we shall concentrate on narrow distribution functions of the form 

The limit (T --* 0 corresponds to a pure x, system and we shall use as a perturbation 
parameter the standard deviation, (T, of the distribution. 

2.1. Ordering at low temperatures 
We first remind the reader of the conventional Maier-Saupe theory 161 corre- 

sponding to the free energy (2.6) in the limit of a pure system with 

A = kT f(R)ln4nf(R)dR - s 
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Polydispersity in liquid crystal systems 113 

Minimizing with respect to f(Q) yields 

1 u -  
f(Q) = - 4 n z  exp {- kT P ,  P ,  (cos 6)}, 

z = - J exp { p 2 P 2  (cos el} dn 

(2.9) 

(2.10) 
1 

4.n 

and the orientation order parameter is given, self consistently, by 

P,  = W [t.G21kT], (2.1 1) 

where the Maier-Saupe function W( y )  is given by 

(2.12) 
d 

W Y )  = 5 [lnZ(v)l 

and, consistent with equation (2. lo), 

exp [ y P 2  (cos~)]  dQ.  (2.13) 

The generalization of this theory to a polydisperse system comes from the mini- 
mization of the functional (2.6) with respect tof(x, Q). We obtain 

with a normalizing factor 

u(x, x‘)p2(x‘)p(x‘) dx‘P, (cos6) . (2.15) 

Combining equations (2.14), (2.15) with the definitions in equations (2.5) and (2.1 l), 
we obtain a set of self-consistent equations for the order parameters P2(x)  

4.n I 
P,(x) = W [ $ u(x, x’)p(x‘)P,(x’) dx‘ , (2.16) 1 

1 P2 = S p ( x ) P , ( x )  dx = u(x, x‘)p(x’)p2(x‘) dx’ . 
(2.17) 

We shall merely seek the leading order behaviour of the solutions to equation (2.16) 
and (2.17) in the limit CJ + 0. To do this we note 

V ( X )  = U ( X ,  X ’ ) P ( X ’ ) ~ , ( X ’ )  dx = (u (x ,  X ’ > ~ , ( X ’ ) >  (2.18a) s 
= (u(x ,  x?> <pz(x’>> + ( (4x9  x’) - (u (x ,  x’)>) (Pz(x’) - ( P , ( X ’ ) > ) > ,  

(2.18b) 

= u(x, X O ) P 2  + 0(CJ2), (2.19) 

Thus to order u2 error equations (2.16) to (2.19) yield 

(2.20) 
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114 T. J. Sluckin 

(the usual Maier-Saupe result for P , )  and 

$ ( x )  = w - u(x, xo)Pz . [ k:. 1 (2.21) 

Equation (2.21) shows that, unsurprisingly, there is excess ordering on those com- 
ponents which couple more strongly to the order parameters, a trend which of course 
has been observed in studies of binary mixtures of liquid crystals [l]. 

2.2. The onset of order 
Martire et aZ. [2] pointed out that, as a consequence of the phase rule, in binary 

mixtures of nematogens there is a range of temperatures over which there is coexist- 
ence between an isotropic and a nematic phase. In general, of course, at coexistence 
the compositions of the two phases of the binary mixture are different. These aspects 
of the nematic-isotropic phase transition are preserved in polydisperse mixtures. In 
general, at nematic-isotropic coexistence the probability distribution functions pN (x) ,  
p I ( x )  in the nematic and isotropic phases will not be the same. As a result if the 
distribution function p(x)  is prescribed there will be a range of temperatures over 
which the system phase separates into a proportion, q, in the nematic phase with 

qpN(x) + ( l  - q)pl(x) = p(x) .  (2.22) 

In this section we calculate the relationship between pN (x )  and p1 (x) ,  and calculate 
the width of the nematic-isotropic coexistence region. We first make some elementary 
observations. In the limit LT -+ 0 the system becomes monodisperse, and thus the 
width of the coexistence regime must also tend to zero. Secondly, in this model the 
molecules of type x are distinguished, and onZy distinguished, by the function u(x,  x ’ )  
which is not constant. It will be useful therefore to parametrize the non-constancy of 
u(x,  x’) by making the expansion 

u(x ,  x’) = uo + u1 [ (x - xo) + (x’ - xo)] + 2421 [(x - xo)2 + (x’ - xo)21 

+ u22 ( x  - x*)(x‘  - xo), (2.23) 

where 

uo = U(X0, xo), (2.24 a) 

aZu 
u = - (xo, xo). 

axax/  

The condition of weak polydispersity can now be quantified; it is that 

(2.24 b) 

(2.24 c) 

(2.24d) 

(2.25 a)  

2 U2i 

UO 
I*i = 0 - 4 1, (2.25 b) 
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Polydispersity in liquid crystal systems 115 

where the small parameters 1, will be useful in the context of perturbation theory. We 
shall suppose, without loss of generality, that u, > 0; equivalently F2(x)  is an increas- 
ing function of x. 

We can now define chemical potentials for each species by functional differen- 
tiation of equation (2.6) 

and the grand thermodynamic potential (per particle) is 

sz = A - p(x)p(x) .  j 

(2.26) 

(2.27) 

Now Q = R[{p(x)}] and, by the usual principles of density functional theory [5, 91, 
is a minimum at the equilibrium value of p(x ) ,  provided that the constraint (2.3) of 
conserved probability is borne in mind. This constraint leads to new Lagrange 
parameter p, and now the condition for equilibrium in phase a is 

(2.28) 

The conditions for equilibrium between two phases a and p are now that 

P a w  = P f l ( 4 ,  (2.29) 

W X )  = fi,(X)? (2.30) 

where the subscripts refer to the phases a and j?. There is no condition, however, that 
pa and p p  should be equal. This arises essentially because the Maier-Saupe theory in 
its simplest form is a constant volume and constant density theory. When we relax this 
constraint, as we shall in the next section, a total chemical potential relation governs 
the relative densities in the two phases. 

We now apply the relation (2.28) to coexisting nematic (N) and isotropic (I) phases 
to obtain 

kT[lnp,(x) + 11 = PI(X) + PI (2.31) 

kT [hpN(x) + I] + kT f~(X1sz)h4Xf,(X, a) dn 

(2.32) 

Applying the definition (2.15) of Z(x), and eliminating pN(x), pI(x) from equations 
(2.31) and (2.32) using equation (2.14) yields 

~ i v  (XI = P I  @)ZN (XI ~ X P  ( ( P N  - P I  ) / k T )  (2.33) 

Now, because P,(x)  is an increasing function of x, Z,(X) is also an increasing function 
of x. Thus we expect that pN(x) peaks at a value of x > x,. 

We use equation (2.15) to find an approximate relation between pN (x), pI (x) in a 
more tractable form. From equation (2.33) 

s 
- u(x, x’)pN(x’)F2(X)P,(x’) dx’ = PN(x) + PN. 

(PN - PI) 
k T  ’ lnpN(x) = lnp,(x) + 1nZN(x) + (2.34) 
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116 T. J. Sluckin 

where from equation (2.15) and (2.18) 

(2.35) 

We now constrain the probability distribution functions pN(x) and pl(x) to be of the 
form 

Using the form (2.36) we expand equation (2.34) around xIo to obtain 

(2.36) 

(2.37) 

where the remaining terms on the right hand side of equation (2.37) are small with 
respect to the terms present from relation (2.25 b). If we make the further supposition 
that crN = gI then equation (2.37) yields 

(2.38) 

where F2 and T can be taken from the monodisperse Maier-Saupe theory at 
isotropic-nematic coexistence [6], thus yielding 

(xNo - xlo) z 0.881 A I  + higher order terms, (2.39) 
0 

with 1, as defined in equation (2.25 a). 
Finally we use this result to calculate the range of nematic-isotropic coexistence 

for a polydisperse fluid with the probability distribution p(x) given by equation (2.7). 
This we calculate by noting that the upper limit of this range, TNl, is given by the 
condition pl(x) = p(x), whereas at the lower limit, TN2,  pN(x) = p(x); these con- 
ditions correspond to the proportion of nematic phase q = 0, 1 respectively. Using 
the usual Maier-Saupe theory 

TN,, = 0.2202 U(X0, XO) + aG2, (2.40) 

where the ao2 is a secular shift in the phase transition due to the polydispersity. TN2 
is calculated for the isotropic distribution function p I  (x) in coexistence with 
pN(x) = p(x). If we use the ansatz (2.36) this has mean xIo given by equation (2.39) 

xIo = x, - 0.881 121 o2 (2.41) 

and 

TN12 = 0 * 2 2 0 2 ~ ( ~ ~ ~ ,  XI,) + ~(0’. (2.42) 

We shall not concern ourselves with the magnitude of the secular shift. However 
comparison of equations (2.40) and (2.42) shows that the region of nematic-isotropic 
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Polydispersity in liquid crystal systems 117 

coexistence is given by, to lowest order in 0, 
2 

_ -  AT - TNll - TN12 N 1.76 [z]  = 1.76 A:, 
T N  1 T N I  

(2.43) 

where we have used the expansion (2.23) to evaluate u ( x l ,  x2) in the neighbourhood 
of (xo, xo). The crucial feature of equation (2.43) is that the coexistence regime shrinks 
to zero both in the limit of monodispersity (0 + 0) and in the limit of identical 
particles, constant u(x, x), for which uI = 0. 

3. Onsager theory: ordering in a polydisperse mixture of rods 
We consider a solution in which rods of length L and fixed diameter D are placed 

in a solvent with concentration c’ = N / V  (total number of rods N ,  volume V ) ,  and 
with a distribution function p(L) .  The related problem of a solution of rod-like 
micelles was treated by McMullen et al. [lo]; Odijk [ l l ]  has also drawn attention to 
this problem. We suppose that the lengths are normally distributed around some 
mean, Lo,  with standard deviation 0, 

This distribution function must be wrong close to L = 0, because rods cannot have 
negative length. So long as (o/Lo) 4 1 this cannot be important and will not affect 
the calculations. For some purposes it will be convenient for us to discuss the 
distribution function of normalized 

x =  

Then 

P ( Y >  = 

where 

lengths 

1 + y = L/Lo. 

s = a/L, 

is the normalized standard deviation. 

3.1. Onsager-Odijk theory 
Because we use monodisperse systems as a reference point in our perturbation 

theory for polydisperse systems it is useful to remind the reader of the basic structure 
of Onsager’s theory of lyotropic ordering [7]. Odijk [l 11 has shown that most of the 
main features of the Onsager theory can be derived using a simple variational ansatz 
and we shall follow this treatment. 

The free energy AA associated with a rod concentration c’ at an orientational 
distribution, f ( Q ) ,  is 

1 + lnc‘ + f(Q)ln4nf(R)dR + &c‘, s - -  _ _  - AA 
NkT kT (3.5) 

where the orientational entropy is given by 

S = - f(Q>ln4nf(R)dQ = - Z  [f(Q)] (3.6) s 
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118 T. J. Sluckin 

and the second virial coefficient is given by 

B, = - 5 p(Q, Q’)f(Q)f(l2’)dQdQ’, ‘s 
with 

@, (Q, a’) = - 2L2D I s h y  (Q, a’) I 
and y(Q, Q‘) the angle between Q and 0’. If 

b = 7114 L2D 

and a scaling is introduced, such that 

c = bc’, 

4 e = - (Isiny(Q, Q’)I). 
7c 

(3.7) 

(3.9) 

(3.10) 

(3.11) 

then 

- -  - const + lnc + X (f) + c e ( f ) .  AA 
NkT 

We observe that in the isotropic phase e = 1. 

yielding for the osmotic pressure II and chemical potential p 

(3.12) 

The equation of state can be derived by taking thermodynamic derivatives of AA,  

- c’(1 + pc),  
rI 
kT 
_ -  (3.13) 

p = po + kT (lnc’ + Z + 2 4 ,  (3.14) 

with po the energy associated with inserting a rod particle in the solvent. The Odijk 
gaussian ansatz consists of supposing 

This ansatz is acceptable for well-ordered systems. For the isotropic phase we do not 
use it, merely noting that e = 1, Z = 0 in this case. For the nematic phase explicit 
substitution of the form (3.15) into the free energy (3.12) and subsequent minimiza- 
tion with respect to a yields (from equation (3.1 1)) 

4 
e = -  

(7ca)”2 
(3.16) 

Z (a) = lna  - 1, (3.17) 

4c2 a = -  (3.18) x 

and hence 

ec = 2. (3.19) 

Coexistence between an isotropic phase at c, and a nematic phase at  cN is thus 
established by equality of osmotic pressures and chemical potentials: from equations 
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Polydispersity in liquid crystal systems 119 

= 31ncN + 
Solving these coexistence equations yields cN = 
osmotic pressure 

(3.20) 

(3.21) 

(3 + ln4/n). (3.22) 

5.12, c, = 3-45, and the coexistence 

15.36. (3.23) 

This compares with the exact answer of cN = 4.19, c, = 3.29 [12]. Finally we remark 
that the theory has been extended to multi-component mixtures. The equation of state 
in the nematic rkgime is always 

- 3c‘ (3.24) 
I1 
k T  
- -  

where c’ is the total concentration of rods, whatever the number of components. We 
have made some effort to go through these derivatives because this section forms the 
reference system for the polydisperse system under consideration. 

3.2. Free energy in the polydisperse rod system 
We consider a system of N rods in volume V ,  with c’ = N / V  distributed as before 

with probabilityp(L) given by equation (3.1). The Helmholtz free energy is given by 
the analogues of equations (3.5) and (2.6) 

- = spo(L)p(L) dL - 1 + lnc’ + p(L)Inp(L)dL 
AA 

N k T  k T  s 
+ 

+ c’ 

p ( L ) f ( L ,  Q) In 4nf(L, 0) dQdL s 
s p(L)p(L’)LL’D I sin y(R, a’) I f (L ,  Q)f(L‘, Q’) dQdQ’dLdL’. 

(3.25) 

3.3. Ordering in the nematic phase 
The degree of order is determined by the parameter c1. The usual nematic order 

p2 = ($(3C0S28 - 1)) x 1 - t ( e 2 )  = 1 - $a. (3.26) 

The gaussian approximation overestimates the nematic order (e.g. p ,  = 0.95 as 
opposed to the exact value of 0-79 at the nematic-isotropic coexistence) and this 
should be borne in mind when judging the spread of order induced by polydispersity. 

It is necessary to minimize the free energy (3.25) with respect to the distribution 
functionf(L, Q) at constant p(L). We make the Odijk gaussian ansatz 

parameter p2 (cos0) is related to c1 by 

(3.27) 
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120 T. J. Sluckin 

The relevant part of the free energy (3.25) is now 

s - -  - irrelevant terms + p(L) [lna(L) - I] AA 
NkT 

We define a(x) = a(L), with x = L/L, from equation (3.2). The equilibrium con- 
dition is 

and after some algebra we obtain the self-consistent equation 

(3.29) 

(3.30) 

with b = 7c/4 LiD,  as in equation (3.9). An approximate solution of this equation can 
be found, in the limit of narrow distributions, by taking 

- (x) 2(2/7~)’~’bc’ 
X 

In this limit, putting c = bc‘ as in equation (3.10) 

4 2  
a(1) = - 

7I 

in agreement with the monodisperse limit (3.18), and 

[-]’+[$]-2x* = 0. 

Solving this equation we obtain 

a(x) [(8x2 + 1)’12 - 11. 
2 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

From this we obtain that u(x) and hence the order parameter, &(x), are, as we might 
reasonably expect, increasing functions of rod length. We also note that for x = 0, 
rods of zero length, there is no ordering, again consistent with intuition. 

3.4. The chemical potentials 
We rewrite the free energy (3.25) in a scaled form, following equation (3.12) 

s - -  - -!-. f p o ( x ) p ( x ) d x  - 1 + lnc’ + p(x)lnp(x)dx AA 
NkT kT  

+ p(x)f(x, 52) In 4nf(x, 0) dQdx + c (xx’q(x, x’)).~,~, , (3.37) J 
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Polydispersity in liquid crystal systems 121 

where 

4 
e(x ,  x’> = ; (I sinyxx@, Q’) I>. (3.38) 

In the isotropic phase e(x, x ’ )  = 1 Vx, x’. The equation of state in the isotropic phase 
is now 

n 
b -  kT = c(1 + c), (3.39) 

as in the monodisperse case. Thus, in this approximation the equation of state by itself 
is not sufficient to betray polydispersity. We expect this result to carry over to the 
exact theory for low polydispersities, although clearly more study is required. 

The chemical potential p(x )  for each species x can be determined from equation 
(3.37) 

’ ( X )  = [””I 
aN(x)  V,T 

(3.40) 

(3.41) 

y i e 1 ding 

- -  ’ (XI  - * + lnc’ + Inp(x) + C(x)  + 2cx (x ’e(x,  x’)),,, (3.42) 

where C(x) is the entropy term in equation (3.37), defined by analogy with C in 
equation (3.12). We first discuss the isotropic phase for which e(x, x’) = 1 and thus 

kT kT 

(3.43) 

Using the gaussian form for p(x) prescribed in equation (3.3) we obtain 

Y2 (3.44) - b ( x >  = [lnc’ + 2c] - [fln2n + Ins] - - + 2cy. 
k, T 2 3  

The quantity Ap(x) plays the role of a potential on particles of species x .  It takes the 
form 

444 - ( Y  - Yo)2 
- N  

kT 2s2 ’ 

yo = 2cs2. 

with 

(3.45) 

(3.46) 

The first two terms in ’ (x) ,  which govern the absolute magnitude, are, however, the 
same as in the monodisperse case (3.14). 

We pass now to a discussion of the nematic phase. Now we have, in the Odijk 
gaussian approximation, 

C ( x )  = lna(x) - 1, (3.47) 

l r  
2 1  

e(x ,  x’) = - - + - 
n”2 a(x‘) (3.48) 
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112 

= -[1 [nu( 2 1)1“2 +($)I ’ 

(3.49) 

(3.50) 

We now use equation (3.36) to obtain 

(3.51) 

We bear in mind the result (3.34), that ~ ( 1 ) ~  = (4c2)/n. Then combining equations 
(3.42), (3.47) and (3.50) we obtain 

4 1 (x’e(x, x ’ ) ) ,  = - 
[n~r(l)]’/~ [ 2 (8x2 + 1)Il2 - 1 

+ lnp(x). (3.52) 

It is now convenient to expand Ap(x) in powers of y = x - 1, using equation (3.36) 
for a(x) 

4 2  
41)  3y 27 (3.53) - -  - 3[(82 - 1)Il2 - 11 z 1 + - + -y2 + . . .. 44 

Hence 

a(x) 4y 22 
a(1) 3 27 y2’ 

In- = _ _ _  

Using the form (3.3) for p(x), and equation (3.34) for a(l), 

(3.54) 

(3.55) 

- ($In272 + Ins) - y2/2s2 + (4y - $ y 2 )  - lnb. 

(3.56) 

Close to y = 0 we now have 

where 

and 

(3.57) 

(3.58) 

1 2  1 - 2 s 2 + j  = - 
2s’’ . (3.59) 
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3.5. Phase equilibrium 
We can use the results for Ap(x) to discuss isotropic-nematic phase coexistence, 

for at phase coexistence Ap(x) is the same in each phase. In the same way as in our 
discussion in $2 we shall be interested in how the probability p ( x )  differs between two 
coexisting phases, and how the isotropic-nematic phase transition is broadened (in 
this case as a function of osmotic pressure) when polydispersity is introduced. The 
general scenario is as follows. For a given&) of gaussian form (3.3) there will be an 
osmotic pressure llg;;, at which the isotropic phase coexists with the nematic phase 
with a probability distribution pN (x) .  As the osmotic pressure is further increased the 
distributions in the coexisting isotropic and nematic phase arrange themselves in such 
a way that the average probability is p(x). At some higher osmotic pressure IIrLx the 
nematic phase takes the probability distribution p(x): for all higher osmotic pressures 
there is only a single nematic phase. Our purpose now is to calculate I'I~~e,  and IIf:Lx, 
and in particular the spread - = A l l  which highlights the effect of the 
polydispersity on the phase diagram. 

We concentrate first on IIl.Li,. In general p N ( x )  and p,(x) at coexistence are 
connected through equation (3.42) and (3.52); at II& pl(x) = p(x). Rather than 
calculate the full form for pN(x) we parametrise it to be of the form 

(3.60) 

which has mean length L, = L,(1 + yN) and variance t$, = ~5;s;. Coexistence now 
occurs between the isotropic and nematic phases with scaled densities c, and cN, and 
using equations (3.44) and (3.56) we obtain 

Y2 lnc, + 2c, - - + 2c,y + Ins 2 3  

We now compare terms of orders 0, 1, 2 in y in this equation; this yields 

1 2  = - + - ,  1 - 
2s2 2s" 3 

(2c, - 4) = fi 
s; ' 

YN)21* 

(3.61) 

(3.62) 

(3.63) 

2 2  + 4YN - 3yN. Y k  
2 4  

lnc, + 2c, + Ins = 31nc, + (3 + 1n:) + Ins, - - 

(3.64) 

This must be solved in conjunction with the condition of equality of osmotic pressures, 
which from equation (3.39) and (3.40) is still identical with the monodisperse con- 
dition (3.20) 

ct(l + c1) = 3cN. (3.65) 

We solve equation (3.62) through (3.65) using perturbation theory around the coexist- 
ence conditions (3.20) and (3.21) for a monodisperse system. To lowest order in s', 
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124 T. J. Sluckin 

using the solutions of equations (3.20) and (3.21) 

y ,  x 2.902, (3.66) 

SL x S2 (1 + 4s’). (3.67) 

The nematic phase, thus, has on average longer rods, and the distribution is also 
wider. Equation (3.64) is now 

lnc, + 2c, = 31n cN + (3 + In :) + 10.81 s’, 

yielding 

CI = 3.45(1 - 0.45$), 

CN = 5.12(1 - 4.05s‘) 

(3.68) 

(3.69 a) 

(3.69 b) 

and hence 

IIiC, = I’IF (1 - 4.05~’). (3.70) 

To find rIi2ex we need only use the results (3.66) through (3.70) bearing in mind that 
now the isotropic phase has 

(3.71) 

but that the distributionsp,(x) andp(x) are related in the same way as&) andp,(x). 
Thus we obtain 

y ,  x -2*90s2, 

s: x $(1 - $2), 

(3.72) 

(3.73) 

indicating, once again, a nematic phase with longer rods and a wider distribution. 
The results (3.69) remain true, except that now the mean length of the rods in the 

isotropic phase is shorter. If we keep the same scaling as in the rest of the problem 
we must correct for this, obtaining for the coexistence concentrations c; and ch 

where 

n b, = - ( L ) ’ D  
4 

and 

( L )  = Lo (1 - 2.90~’) 

(3.74) 

(3.75) 

(3.76) 

is the mean length in the isotropic phase. Thus we obtain 

C; z 3.45(1 - 0.45s2)(1 + 5.80s2), (3.77 a) 

C; z 5.12(1 - 4.05s2)(1 + 5.80s’)  (3.77 b) 

and hence 

II!iid,, = I I F  (1 - 4*05~’)(1 + 5.80s’). (3.78) 
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Polydispersity in liquid crystal systems I25 

Finally comparing equations (3.70) and (3.78) we obtain the width of the coexistence 
region as a function of the polydispersity 

ngx - n") coex - -  - A l l  - 5-80? + 0(s4). 
K o e x  f i C N X  

(3.79) 

4. Smectic order in hard rod systems 
There has been much debate over the yeax as to the crucial physical mechanism 

governing smecticity. Systems with orientational fluctuations supressed might be 
expected to exhibit the minimal conditions for smectic phase formation. However, a 
simple scaling argument is sufficient to show that aligned hard ellipsoids cannot form 
a smectic A phase. Stroobants et al. have performed simulations in which aligned 
spherocylinders form a smectic phase [8]. In this section we discuss smectic A forma- 
tion in a polydisperse mixture of aligned cylinders with the same diameter but varying 
lengths. 

The work of Stroobants et al. [8] has inspired numerous theoretical studies 
[13-161 all of which are able, with greater or lesser accuracy, to predict the density 
at which the nematic phase becomes unstable with respect to smectic fluctuations. 
The best treatment is due to Mulder [13] and we begin our exposition below with a 
summary of his theory. In this theory the smectic A-nematic transition is second 
order. The crucial effect of the polydispersity is to reduce the susceptibility xMax(k) to 
smectic fluctuations at the smectic wavenumber k,  while at the same time widening the 
peak of ~ ( k ) .  This postpones the smectic transition to higher densities. For sufficiently 
high polydispersity in this system we might expect the smectic A phase to disappear 
entirely, leaving a high density columnar phase. The columnar phase is essentially a 
two dimensional crystallization in the plane perpendicular to the rods. A number of 
authors [ 17, 181 have observed that crystallization is postponed in polydisperse hard 
sphere systems, and the phenomenon we describe is, of course, directly analogous to 
this. In that case the high density phase is a glass. We might expect that if orientational 
fluctuations were reintroduced into this model the true high density phase would be 
a kind of smectic glass. 

Our task in this section is to describe what happens to the phase transition as a 
function of polydispersity. We choose a particle distribution function exactly as in the 
last section: particles with diameter D and length L = Lox = L,(1 + y )  with p(L),  
p(  y )  given as in equation (3.1) and (3.3). 

4.1. The monodisperse system 
A liquid is unstable with respect to fluctuations with wave-number k when the 

structure factor S(k) = [l - ~c(k)]- '  diverges, where e is the liquid density and c(k) 
is the direct correlation function. In hard particle fluids a good approximation for the 
direct correlation function c(r) is [19, 201 

c(r12) = - if particles 1, 2 overlap, 
(4.1) 

= 0, otherwise, 
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126 T. J. Sluckin 

where ‘1 is the packing fraction, the volume occupied by fluid particles. In this case the 
particles are cylinders aligned in the z direction. Thus 

~ D ~ L  
4 ‘ 1 = -  e 

and 

if IzI < L ,  x2 + y 2  < D2, c(r) = c(x, y ,  z )  = - ~ 

1 
(1 - ‘1) 

= 0 otherwise. (4.3) 

We seek an instability with wavenumber k = k l  then 

Hence 

~ ( 0 ,  0, k)  = - - nD2 1‘ exp (ikz) dz, 
(1 - ‘1) - L  

811 sinkL ec(k) = - -- 
1 - q  kL 

The susceptibility S(k) has a maximum for the same value 
when 

- -  kQL - 0.715 
2n 

and 

sin k,, L - -  - -0.217. 
ko L 

The instability to a smectic A phase thus occurs when 

81 sin koL 
Qc(k0) = - -___ - 1  - 

1 - ‘1 koL 

or when 

(4.4) 

(4.5) 

(4.6) 

of k as ec(k): this occurs 

(4.7) 

(4.9) 

(4.10) 

where qcp = 0.906 is the packing fraction at close packing. The wavelength of the 
smectic wave 

2n - 1.398. - A 
L k,L 
- _ _ _ -  (4.1 1) 

We compare equations (4. lo), (4.1 1) with the simulation results of Stroobants et al. 
[8], for which 

q: 0.39, AIL = 1-28. (4.12) 
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4.2. The polydisperse system: formal theory 
We discuss the stability of a uniform equilibrium 

e(r; 4 = @(XI = @P@) (4.13) 

where x is the index of polydispersity. We consider small fluctuations in the density 

&(r, x) = &(k, x )  exp ( i k . r ) .  (4.14) 

The correct thermodynamic potential is the grand thermodynamic potential R [9]; 
then close to uniform equilibrium 

a[@ + &?I = “1 + 60,  (4.15) 

k 

where 

- c(r, r’; x ,  x’) drdr’ dxdx’ 1 6R = - 6e(r, x )  6&’, x’) [ W - ;::; - r’) 
2 ‘I 

(4.16) 

which is more conveniently expressed in reciprocal space: 

- c@; X ,  x’)  dxdx’. (4.17) 1 1 6R = 5 5 6 e ( k ,  x)6Q*(k, x’)  
k,k 

This expression is not in normal form-it contains terms non-diagonal in x ,  x’. It can 
be converted into an expression in normal form by solving the eigenvalue equation 

- C(k, X ,  x’) f(x’)dX’ = &f(x).  1 (4.18) 

When the lowest eigenvalue of this equation E* = 0, the form (4.17) is no longer 
positive definite, and the uniform state (4.13) becomes unstable. An estimate of go can 
be made using the trial function f ( x )  = p(x ) .  This gives an upper bound for E ~ ,  

yielding 

- c(k,  X ,  x’)  dxdx’ 1 6(x - x’) 

= - 1 - Jp(x)p(x‘)c(k;  x ,  x’). 
e 

(4.19) 

(4.20) 

Defining E(k) = J p(x)p(x’)c(k; x ,  x’) dxdx‘, we obtain as a criterion for instability 
to the smectic phase therefore the condition 

@(k)  = 1 ,  (4.21) 

where it is assumed that k is evaluated at the maximum of QE(k). 
The condition (4.21) is in fact a bound on the stability of the uniform nematic 

phase. The assumption is that the non-uniform state has the same probability distri- 
bution as the uniform state. We note finally that condition (4.21) was used by WcRae 
and Haymet [ 171 in their discussion of crystallization in polydisperse systems, 
although without the justification given here. 
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128 T. J. Sluckin 

4.3. The polydisperse system: calculations 
From equations (4.6) and (4.21) the condition for instability of the uniform 

nematic phase is 

8 y F  (kL,) + 1 = 0, 
1 - v  

where 

(4.22) 

(4.23) 

is evaluated at its first minimum. In the case that p ( x )  takes the gaussian form (see 
equations (3.3)) [ y  = x - 11 

F(kLo) can be evaluated analytically, although we point out that for very large s 
p(0)  # 0 in the gaussian form, and this may affect the usefulness of the calculation. 
We first evaluate equation (4.23). We define 

1 
CJ = - ( y  + y ’ )  

J 2  

and 

Then 

and 

(4.24) 

1 w = - ( y  - y’). 
J 2  

(4.25) 

sin kLo 1 + - v  [ ( j2 dv, (4.26) 

(4.27) 

(4.28) 
W 1 

sin kL, 

ki Li s2 
x exp [ - 7 1  dv, (4.29) 

(4.30) - - -  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Polydispersity in liquid crystal systems 129 

We first discuss the wavelength at which instability occurs, 

and the condition 

F'(kLo) = 0 

yields 
- I  tan kLo 

kL0 

(4.3 I )  

(4.32) 

(4.33) 

The s = 0 solution of this equation is given in equation (4.7); we seek a perturbative 
solution close to koL = 4.493, yielding 

k(s) = ko + 6k 

and 

6kLo = - 2 . 2 5 ~ ~ .  (4.34) 

This indicates a reduction in the critical wavenumber, or an increase in the wavelength 
over what might be expected by taking the mean length of rods in the polydisperse 
system. There is, however, a limit in the increase in ,I; even for very large s A/L < 2, 
from the form of equation (4.30). 

The exponential term in equation (4.30) clearly reduces the absolute magnitude of 
F(kLo) dramatically, and hence from equation (4.22), postpones the onset of smectic- 
ity to higher densities. An estimate of this reduction can be obtained by substituting 
in equation (4.30) the solution (4.8) yielding for the critical density 

(4.35) 

Now a maximum value for qc(s) is the close-packing density for a two dimensional 
fluid q x 0.906; this gives a maximum value for s of about 0.30 to destroy all 
smecticity. In practice this is likely to be a gross overestimate. Nevertheless the effect 
does not seem to be as great as that predicted for crystallization [17]. 

5. Final remarks 
In this paper we have taken three of the simplest models of liquid crystal behav- 

iour, and generalized them to polydisperse mixtures. On the whole we have confined 
our interest to weak polydispersity, in such a way that the effects of turning on 
polydispersity could be exhibited analytically. The models are, of course, soluble in 
the strong polydisperse limit too, but only at the expense of a great deal of numerical 
work which might not increase understanding of the physical processes involved. 

The Maier-Saupe system which we discuss in Q1 might be regarded as a model for 
thermotropic liquid crystal formation in a solution of colloidal ellipsoids. The 
Onsager system discussed in $2 is perhaps appropriate to viral mixtures-we recall 
that the Onsager picture has been fruitfully used to discuss nematic formation in 
tobacco mosaic virus solutions. Both these nematic systems develop a region of two 
phase coexistence at nematic onset in polydisperse systems, a consequence of the 
Gibbs phase rule. In retrospect it is not surprising that this two phase region has a 
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width proportional to the variance of the polydispersity distribution function and we 
could perhaps for some purpose$ model polydisperse systems as effective two com- 
ponent mixtures, at any rate in the weak polydispersity limit. The smectic system 
shows a dramatic postponement of smectic onset with polydispersity, again a con- 
clusion which is consistent with intuition. Polydisperse rods do not fit into layers as 
easily as do rods of the same length. 

Are models of polydispersity appropriate to discussing liquid crystal formation in 
small molecules? Many liquid crystal forming substances are made from molecules 
which have a rigid backbone with some alkyl end chains. Such molecules are 
traditionally thought of as being in some sense on average cylindrical. It might be 
possible to take into account the real shapes as being polydisperse departures from 
cylindrical symmetry. In this case, of course, the calculations would have to be per- 
formed with an order parameter that takes into account the biaxiality, and not just with 
the usual p 2 ,  as is done in this paper. However, such polydispersity is variable-it is 
coupled with the interparticle statistical mechanics. Another example of variable 
polydispersity arises in a system of rod-like micelles [lo]. The statistical mechanics of 
variable polydispersity is closely related to that of the fixed polydispersity considered 
here. There are crucial differences, however, in particular in the variable polydisperse 
case there is not necessarily a two phase coexistence region at a phase transition. We 
return to this problem elsewhere [21]. Finally we note that the most common form of 
polydispersity in familiar systems lies perhaps in polymeric systems, the polydispersity 
index being either the molecular weight or the chain flexibility. This kind of problem 
can be treated using the framework developed in this paper, and is currently under 
investigation. 

I thank Seth Fraden for many discussions and for encouraging me to persevere 
with the calculations. I have also had useful conversations with Dominic Tildesley and 
Henk Lekkerkerker, both of whom pointed out some useful literature. Geoffrey 
Luckhurst drew my attention to the possibility of discussing small molecule systems 
from the point of view of polydispersity. The initial part of the work was carried out 
while I was a visitor at the Institut Laue-Langevin in Grenoble, and I thank Philippe 
Nozikres for the invitation to spend time there. 
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